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Introduction 

 

Somatostatin (SST) is a peptide hormone that inhibits the release of 

various hormones and growth factors. The receptors are also expressed in 

numerous tumors, with SSTR2, the predominant subtype expressed in breast 

cancer. Although there are some data for inhibitory effects of SST 

analogues in breast cancer, to date, small clinical trials of these agents 

have not been successful, perhaps in part because SSTR status prior to 

treatment was minimally investigated and varied in these studies.  Until 

recently, SSTR expression has been performed by labor intensive methods 

such as autoradiography and RT-PCR in vitro and scintigraphy in vivo.  We 

have developed a series of algorithms called AQUA that can assess protein 

expression on tissue microarrays (TMA) based on molecular co-localization 

techniques. Our automated analysis involves immunohistochemistry (IHC) 

combined with semi-automated acquisition and analysis of 

compartmentalized, quantitative, continuous scores which removes the 

inherent subjectivity of standard pathologist-based scoring systems. Our 

proposal further characterizes the expression and clinical significance of 

SST
R
2 using large cohort breast cancer TMAs and outlines a means to 

translate and normalize the AQUA measurements from TMAs to whole section 

for clinical applications.  In this manner, we hope to direct the 

development of targeted therapies to SSTRs more rationally.   

 

 

Body 

 

Task 1. Characterize SSTR2 expression in a breast cancer TMA 

   

The goals of this aim have been completed.  In summary, using AQUA analysis 

of SSTR2 expression on multiple fold redundant large cohort breast cancer 

TMA, SSTR2 stained predominantly in the invasive tumors in a membranous 

pattern, and to a lesser extent, in the stroma and vascular/lymphatic 

structures as well. And although in our cohort of patients, SSTR2 expression 

did not correlate significantly with survival, the clear overexpression of 

SSTR2 in tumors (as compared with benign breast epithelium)and the 

predominant tumoral rather than stromal localization suggest that future 

studies of SSTR2 as a homing target for labeled somatostatin analogues may 

be an effective strategy.   

 

Task 2. Translating TMA-based AQUA algorithms to whole sections 

 

Whole section analysis of ER from multiple slides/blocks of breast cancer 

has been completed and has recently been published (1).  This showed good 

concordancy among blocks from the same specimen using AQUA or pathologist-

based binary measurements but poorer concordancy when continuous AQUA scores 

were used.   

 

The same breast cancer whole sections have been stained with SSTR2 (same 

antibody used for TMA experiments) and AQUA analysis of the entire sections 

have been performed using similar methods to what was described in the above 

manuscript.  This analysis showed that whereas there is heterogeneity of 
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scores within a section, the variability was not as significant.  Scatter 

plots of AQUA scores showed a relatively low level of variance for both low 

SSTR2 and high SSTR2 expressing cases (Figure 1).  These results suggest 

that a relatively few representative areas of tumors could be sampled 

(either as TMA redundancy or as separate areas within a section) to 

represent SSTR2 expression within a tumor. 
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Task 3. Conversion of AQUA to a protein concentration 

 

In order to construct a standard curve for SSTR2 to serve as a reference 

point for conversion of AQUA scores of SSTR2 in tissue to protein 

concentration, we attempted to construct a serial dilution of SSTR2 peptide 

arrays in a matrix such as collagen.  This however was quite problematic 

secondary to a variety of reasons, predominantly related to difficulties in 

constructing a peptide plug that was still stainable and readable by the 

AQUA protocol.  ELISA measurements of these cell lines have also been 

problematic as concordance with AQUA scores of cell line arrays (see below) 

has been difficult to reproduce.  We suspect this may be related to 

variances in tissue culture conditions when performing both procedures.   

 

We therefore have begun to use established breast cancer cell lines as a 

reference measure.  ‘Boutique’ arrays are small arrays of 10-20 cancer cell 

lines processed into a cell line microarray (a procedure our lab has 

utilized in previous experiments involving harvesting the cell lines, 

formalin fixation, resuspension, then conventional paraffin embedding) have 

been constructed.  An example of the range of SSTR2 AQUA scores from these 

boutique arrays has been previously reported.  These arrays can then be 

added on to tissue arrays or whole sections adjacently on the same slide or 

at least stained side-by-side with the experimental slide.  In this manner, 

slide-to-slide normalization is possible for comparative studies.  In the 

future, we propose that all SSTR2 measurements with AQUA in tissue be 

performed with these cell line controls.  All whole section analysis studies 

as well as final TMA analysis have been performed with this normalization 

procedure.  

 

Figure 1.  Scatter plots for SSTR2 scores on whole sections 

of breast cancer  
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Key Research Accomplishments 

 

1. SSTR2 is expressed predominantly in the membrane compartment of breast 
tumor cells based on in situ AQUA measurements but is also present in 

stromal elements including apparent vessel compartments.  Although 

SSTR2 is overexpressed in malignant breasts tumor cells compared with 

normal breast epithelial cells and was associated with several standard 

breast cancer prognostic parameters, it was not associated with 

survival. 

2. An endothelial compartment can be constructed with AQUA using specific 
antibodies (e.g. CD31) that is prognostic of outcome and associated 

with breast cancer parameters (e.g. tumor size).  This compartment can 

be used as another co-localization parameter such that quantitative 

measurements of SSTR2 within tumor and vessel compartments can be 

simultaneously obtained. 

3. SSTR2 can be stained and analyzed by AQUA on whole tissue sections 
following the algorithms established by estrogen receptor.  Grids of 

the whole sections can be placed ‘virtually’ on the section such that 

the entire section can be analyzed rapidly and efficiently.  ER 

heterogeneity was most marked with continuous measurements.  Further 

analysis of SSTR2 stained whole sections show that heterogeneity of 

expression was fairly minimal and that analysis of only a few (2-3) 

fields were representative of whole sections. 

4. Boutique cell line arrays have become more readily accomplished.  SSTR2 
measurements in consistently designed boutique arrays are more 

consistent although correlations with ELISA measurements were 

inconsistent.  

5. Clinical protocol studying SSTR2 expression by three different 
methodologies in patients with sarcomas or breast cancers 
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Reportable Outcomes 

 

1. Somatostatin Receptor Subtype 2 (SSTR2) Expression in Breast Cancer. 
Ghosh S, Zerkowski M, Camp RL, Rimm DL, Murren J, Chung GG.  Submitted.   

 

2. Quantitative Analysis of Estrogen Receptor Heterogeneity in Breast 

Cancer.  Chung GG, Zerkowski MP, Ghosh S, Camp RL, Rimm DL.  Lab 

Invest, 87(7):662-669, 2007. 

 

3. Decreased Expression of Somatostatin Receptor Subtype 2 (SSTR2) in 

Pancreatic Adenocarcinoma is Associated with a Poor Prognosis. Ghosh S, 

Yoon H, Harigopal M, Salem RR, Psyrri A, Camp RL, Rimm DL, Burtness BA, 

Murren JR, Chung GG. Cancer Invest, in press. 

 

4. Biomarker validation: in situ analysis of protein expression using 

semi-quantitative immunohistochemistry-based techniques. Sullivan CO, 

Chung GG.  Clinical Colorectal Cancer, 7(3):172-177, 2008.   

 

5. Yale University HIC protocol 12513: Characterization of Somatostatin 

Receptor Expression in Sarcomas and Breast Cancer 

 

Personnel receiving pay from research effort 

1. Maciej Zerkowski 
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Conclusions 

 

We have begun a systematic analysis of the expression of the SSTR2 in breast 

cancer using our automated analysis methodology which allows rapid, 

reproducible, quantitative measurements of in situ protein expression on 

tissue arrays.  Our results show that SSTR2 is expressed in a graded fashion 

in a large proportion of breast cancers, is expressed predominantly within 

tumors and less so in stromal elements, and that it is mostly expressed in 

the membrane compartment of tumors.  Although expression was not 

significantly correlated with survival on our TMA, it did appear to be 

significantly overexpressed in malignant breast epithelium compared with 

benign breast tissue.  These results have now been reproduced in multiple 

fold, large cohort TMAs with several different antibodies.  Because SSTR2 

have been implicated in tumor angiogenesis and because our initial results 

suggested SSTR2 localized to tumor associated microvessels, we have also 

initiated work on creating a vessel compartment with AQUA.  This has been 

readily accomplished using similar AQUA algorithms and a CD31 antibody and 

shows that an AQUA-based microvessel area is feasible, that it is associated 

with survival and other prognostic parameters in breast cancer, and that co-

staining with other markers (e.g. VEGF, SSTR2) using a multiplexing protocol 

is feasible.  Furthermore, cell line controls have been developed into 

“boutique array” with known relative levels of SSTR2 to serve as inter-slide 

normalization measures.  Using ER as a prototype biomarker in breast cancer, 

we have translated the AQUA methodology to whole sections and adapted this 

protocol to analyze SSTR2 on whole sections.  
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ABSTRACT  

Biomarker driven cancer research has become common in current literature.  Much of this is 

driven by the increase in genomic and proteomic high throughput technologies that have 

increased our knowledge but has also produced a plethora of data with unclear clinical 

significance.  Immunohistochemistry based assessment of protein expression is a natural 

validation method of expression profiling data that is easily performed on tissue samples 

collected prospectively or from archived samples.  Coupled with tissue microarray technology 

and the increasing numbers of available automated, quantitative systems to read these arrays, we 

now have an efficient manner to validate biomarkers for prognostic and predictive capabilities as 

well as for identification of drug development targets. 
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INTRODUCTION 

 

Although traditional clinicopathologic measurements of cancers such as stage and tumor grade 

are extremely helpful in determining the prognosis of a patient and to guide us in treatment 

recommendations, they are imperfect and likely lead to frequent under- and over-treatment.  

Thus, there has been great interest in the identification and validation of new biomarkers to more 

precisely guide us in these clinical decision-making processes and also to help us better 

understand tumor biology and aide in drug development strategies.   

 

With the advent of high-throughput genomic technologies such as cDNA microarrays that allow 

the simultaneous analysis of thousands of genes from biologic samples, we now have a multitude 

of studies that have identified potentially useful candidate biomarkers for the above purposes.
1-4

 

Whereas these approaches have affirmed the complexity of cancer, the translation of these 

promising gene profiling studies to clinically useful tests have been difficult.  Part of this 

difficulty is self-imposed as expression arrays can sometimes produce erroneous data with false 

negative and positive results.
5
  In addition, these studies for the most part rely on obtaining fresh, 

frozen, non-fixed tissue making widespread clinical diagnostic applications more challenging. 

 

In addition to refining these technologies, it is now increasingly recognized that confirmation of 

these expression array data is critical.  A variety of methods is available and has been utilized.  

At the RNA level, methods such as Northern blots, real-time RT-PCR, and in situ hybridization 

(ISH) have been used effectively but can have technical challenges and is not always easily 

implemented.
6
  Furthermore, a more likely relevant validation may be to study the expression 
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level of the biomarkers at a protein level such as with immunohistochemistry (IHC).  Studies 

have shown that there is often discordance between levels of nucleic acids and proteins implying 

that the study of both measures is important.  In any case, validating the functionality and clinical 

relevance as well as ensuring reproducibility and broad applicability of these biomarkers is an 

important priority. 

 

Methods of Gene Expression Validation in Tissue 

 

Several methods of confirming gene expression have been described.  In general, RNA-based 

evaluations such as RT-PCR and Northern blot experiments are a vital initial step in the process 

but face a multitude of limitations.  These include optimizing the stability of RNA, requirements 

for large amounts of material from often fresh/frozen tissue (esp. with Northern blots), separating 

tumor from non-tumor tissue (with procedures like laser capture microdissection, LCM), cost, 

and time requirements.
6, 7

  Furthermore, these studies do not maintain the integrity of the tissue.  

Alternatively, in situ studies allow us to look at genes and proteins within the context of tissue 

morphology.  With in vitro models, we can infer that the results are what may be occurring in the 

cells of interest.  However with in situ studies we can actually investigate the levels of nucleic 

acids/proteins on an individual cell (and sometimes sub-cellular) level, while anatomically 

preserving the tumor microenvironment.   

 

With the development of in situ hybridization (involving the use of a labeled complimentary 

DNA or RNA strands to localize a specific DNA or RNA sequence of interest), identification 

and localization of chromosomes and chromosomal integrity can be evaluated.  In addition, with 
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careful normalization standards, quantification of amplified gene signals and mRNA transcripts 

of interest can be analyzed as evidenced by fluorescence in situ hybridization (FISH) studies of 

Her2/neu in breast cancer.
8, 9

   

 

At the protein level, the majority of validation assays have used immunoblots, ELISA assays, 

tissue lysate arrays (lysates from cells collected by LCM arrayed onto nylon coated slides), and 

immunohistochemistry.
10-12

  Although methods such as ELISA may be more truly quantitative as 

measurements are reported in absolute concentrations, IHC is however the only method that 

maintains morphologic information.  The tissue microarray (TMA) methodology represents an 

excellent means of using both ISH and IHC techniques in a large set of tissue samples.
13

  Some 

of the most commonly used in situ methods are outlined in Table 1.   

 

Immunohistochemical Analysis 

 

IHC has been used as a standard diagnostics tool in pathology since the late 1970’s.  It involves a 

series of semi-standardized steps.  These include the removal and processing of a tissue sample 

from a donor, antigen retrieval, application of a primary antibody specific to the antigen target, 

rinsing and washing in buffers to minimize non-specific reactions, application of a secondary 

antibody specific to the primary antibody species conjugated to a tag (such as biotin or 

horseradish peroxidase), and finally addition of a detection reagent (such as a chromagen or 

fluorophore) to visualize the deposition of the primary antibody.  A more detailed description of 

this technique can be found in a recent review by Taylor et al.
14

  Because these studies can be 

performed on tissue that has been processed, fixed, and paraffin embedded in a standard fashion, 
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it can be utilized on biopsies or surgical specimens not only prospectively collected on clinical 

trials, but also on specimens obtained pre or post a specific treatment, and on archived samples. 

 

Although both frozen and formalin-fixed paraffin-embedded (FFPE) processed tissue are used, 

frozen tissue allows for native structures within the cell to be maintained for DNA, RNA, and 

protein.  This makes it very appealing for those working with gene expression arrays.  However, 

when doing IHC or ISH, the tissue can be harder to work with due to temperature maintenance 

requirements, therefore FFPE tissue is the most common source of tissue for these studies.
15

 The 

relative pros and cons of different tissue sources are outlined in Table 2. 

 

Although IHC is a widely used technique, several disadvantages exist specific to the use of FFPE 

tissue.  One problem relates to fixation times and requirements for antigen retrieval.  Formalin 

fixation occurs through a combination of penetration and cross-linking.  The rate of penetration 

of formalin through tissue has thus commonly been reported to be approximately 1mm/hour and 

therefore varies from sample to sample depending on the size of tissue and the more speculative 

variable of cross-linking time.
16

  Because molecular changes may occur (and in a patchy fashion) 

during this period, the reliability and reproducibility of certain immunohistochemically detected 

biomarkers may be compromised.
17

  Nevertheless, there are several studies that have positively 

evaluated IHC results over different fixation times and TMA studies that have shown 

reproducibility in staining and outcome correlations when looking at tissue across multiple 

decades.
18, 19
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Another important variable related to IHC-based studies is specificity of antibody.  The methods 

for antibody validation are certainly not standardized for even common commercially available 

antibodies but often involve utilizing cell lines with known or tested concentrations of the 

antigen compared by immunoblot analysis and/or ELISA.  For our AQUA/TMA based studies 

(see below), we use these same cell lines to make ‘cell blocks’ to place on a TMA to serve as an 

internal control as well as a normalization standard for slide-to-slide comparisons.
20

  Although 

studies with blocking peptides is helpful, it does not give us an antibody’s true specificity or 

information regarding signal to noise ratios.  Of course, simply observing staining patterns and 

localization, confirming reproducibility, and if available, correlating with expected clinical 

parameters may also assist in  assessing the specificity of an antibody.   

 

Tissue Microarrays 

 

As noted above, tissue microarrays complement the large scale genomic/proteomic discovery 

approach of expression arrays by allowing the simultaneous analysis of DNA, RNA, or protein in 

large numbers of samples per single experiment (as opposed to DNA arrays which look at large 

numbers of gene products simultaneously in a test sample).  By linking these data to relevant 

outcome information, e.g. survival, these analyses can give insight into the clinical significance 

of a given biomarker. 

 

Although the concept of standardizing and streamlining immunohistochemistry techniques have 

been previously reported,
21

 Kononen et al.
22

 first described a device for the construction of 
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TMAs that could be feasibly accessible to many labs. The bulk of the time spent in TMA 

construction is the collection of the appropriate paraffin-embedded ‘donor’ tissue blocks and 

identification of the area of tissue of interest (e.g. invasive tumor).  The ‘recipient’ or ‘master’ 

arrays are then assembled by taking a core tissue specimen from hundreds of separate donor 

blocks (e.g. different patient tumor blocks) and re-embedding them into the recipient block.  

Typically, cores are 0.6 mm in diameter spaced at 0.7-0.8 mm, which allows up to a 1000 

samples to be placed on a recipient block.  Larger diameter cores can also be taken in certain 

instances (for example when tissue heterogeneity is expected to be greater), although this reduces 

the number of cores that can be taken from the donor block and that can be placed into the 

recipient block.  Depending on the thickness of the samples, 100-200 5µm sections can be cut 

from the recipient block for transfer onto a standard glass slide using an adhesive tape transfer 

method.  The resultant slide can then be analyzed for a variety of molecular targets at the DNA, 

RNA, or protein level.  Redundant arrays can also be constructed by obtaining multiple cores 

from the donor blocks and placing them at identical coordinates in recipient blocks.   

 

Because both cut slides as well as blocks may be subject to antigen oxidation and degeneration, 

some facilities store recipient blocks in sealed nitrogen chambers and coat cut slides in paraffin 

to minimize these effects.
23

  In addition, because tissue blocks are three-dimensional structures 

that can change as more sections are cut, most facilities employ a quality control monitoring 

system (e.g. every 10
th

 section stained with H&E to assess tissue representativity). 

 

There are several advantages to TMAs.  First and most significant is the amplification of tissue 

resources.  A conventional block would be exhausted by 50-100 cuts and analysis of 50 
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antibodies on 250 specimens would require 12,500 slides.  This approach to tissue analysis is a 

prohibitive task that also very quickly exhausts tissue resources.  As an example using TMAs, up 

to 400 master blocks can be made from a 1 cm tissue section.  These can each be cut as many as 

200 times, allowing the evaluation of 80,000 unique reagents.  Second, this allows the efficient 

organization and storage of archived tissue blocks in many pathology departments.  At the Yale 

TMA Facility, radiofrequency identification tags are used in the tissue blocks for this purpose.   

Third, large numbers of different types of tissues (benign and malignant), xenograft tissues, cell 

lines, or recombinant proteins can be readily integrated into the arrays to serve as intra- and 

inter-slide reference controls.  Only a limited amount of antibody and other reagents, similar to 

what is used for a whole section, are required.  In addition, because hundreds of samples can be 

studied in one experiment, common variables that can affect reproducibility, such as antigen 

retrieval, reagent concentrations, and washing times, can be standardized.   

 

A common criticism of TMAs relates to the issue of tissue and tumor heterogeneity; whether a 

small core is representative of the entire tumor.  Indeed, this argument can be expanded to whole 

tissue sections and blocks of tumor, as large surgical resections are only semi-randomly sampled 

by the pathologist.  Nevertheless, many investigators have shown concordance rates of 

approximately 95% between 2-4 0.6 mm TMA spots and whole sections for common biomarkers 

such as estrogen receptor (ER) and progesterone receptor (PR) in breast cancer.
18, 24

  

Furthermore, they were able to reproduce known clinico-pathologic correlations with the TMA-

based studies.
24

 Similar validation studies have been performed in numerous other tumors, 

including those felt to be more inherently heterogenous such as Hodgkin’s lymphoma,
25

 

pancreatic carcinoma,
26

 and soft tissue sarcomas,
27

 and colorectal cancer.
28

  Although TMAs are 
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best used as epidemiology based research tools to examine relative expression of molecular 

markers in large cohorts of patients, these studies suggest that diagnostic application to 

individual clinical patients may also be appropriate if used judiciously.   

 

Analysis and Interpretation of IHC studies 

 

Manual scoring 

For both routine histologic whole sections and for TMAs, the most common method of 

“quantifying” protein expression on immunostained tissue is visualization of chromagen (brown 

stain) intensity by light microscopy by a pathologist.  This is a popular method used by nearly all 

clinical diagnostic studies (e.g. ER in breast cancer, epidermal growth factor receptor) for a 

number of reasons.  Most importantly, it is easily performed and analyzed by a standard 

immunolab and by a pathologist’s trained eye.  Moreover, it is compatible with hematoxylin as a 

counter stain to delineate morphologic context.  Although the readout is often a binary variable 

(positive or negative), efforts at semi-quantitative scoring (H scores and Allred scores for ER and 

0, 1, 2, 3 scores for Her2/neu immunostains in breast cancer) have been partially successful.
8, 29

  

This method has also been extensively and most commonly used to analyze TMA-based IHC 

studies.
30

 

 

Automated analysis of chromagen-based IHC 

Despite the many pros of pathologist-based scoring of immunostains, there are some drawbacks 

as well.  Numerous studies have now demonstrated the fairly high intra- and inter-observer 

variability seen with these analyses, presumably due to the subjective nature of these readouts.
31
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Thus in recent years, numerous technologies have been described with the goal towards a more 

automated image acquisition of microscopy fields and TMA spots and the production of a 

continuous data set of IHC scores.  Most of these systems are based again on acquisition of 

traditional chromagen (brown stain) images with modified bright field microscopy.  Table 3 

discusses some of the currently available systems for automated analysis, many of which are 

programmed with the ability to determine the location of tissue spots in tissue microarrays.   

 

Automated analysis of fluorescence based IHC  

 

Because protein concentrations can span many logs of expression, the utilization of a detection 

system that spans as great as possible dynamic range to mimic the biologic levels of the protein 

is important.  Brown stains typically have low absorbance and thus have limited dynamic range.  

Fluorescence-based detection systems may have an advantage based on its wider dynamic range 

and multiplexing capabilities.
32

  Although tissues do have endogenous autofluorescence, this 

confounding variable can be minimized with adequate controls, and careful attention to 

fluorophore chosen and antibody titer.   

 

Our group at Yale has developed a technology called AQUA that uses an immunofluoresence-

based detection system which allows increased sensitivity and dynamic range.
33

  The unique 

aspect of this system is that rather than using morphology to define compartments, it uses 

molecular tags (e.g. cytokeratin for epithelium and DAPI for nucleus).  Using a series of 

algorithms to subtract out-of-focus from in-focus images (RESA) as well as the molecular co-

localization algorithms (PLACE), protein expression is then assessed on a continuous scale 
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within the compartment of interest (e.g. tumor cells) normalized to area (Figure 1).  This 

technology has been applied to the study of a variety of biomarkers in numerous different 

cancers.
34-36

  A recent study showed that AQUA-based quantitation was proportional to ELISA-

based concentrations of HER2 in cell lines suggesting that in situ quantitation may be possible 

with maintenance of spatial information.
37

  In addition, because a molecular tag is simply defined 

by a molecule with specificity for a defined/localized antigen, one can use the technology to 

study protein expression in other compartments (e.g. golgi, mitochondria, microvessels) as well 

as virtual compartments (expression of protein A within area defined by protein B).
38

  Although 

not yet clinically realized, several studies have suggested that compartmental localization of 

certain markers may indeed be important in the study of biological function as well as in the 

classification of certain diseases.
39

  

 

Despite these benefits, this technology is still dependent on important human elements, for 

example to localize the relevant areas of study (e.g. tumor) versus other benign areas.  Many of 

the systems utilizing fluorescence may also be limited to single exposure times while imaging a 

single slide.  Some programs are being upgraded and tested for utilizing individual exposure 

times per image and correcting for the difference in algorithms for determining quantitation 

afterwards.  And of course the limitations discussed above for FFPE regarding fixation of tissue 

and antibody validation are also relevant for AQUA.   
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CONCLUSION 

  

Measurement of biomarkers and their profiles may be a more precise surrogate marker for older 

more traditional measurements of tumor behavior such as stage and grade.  Thus in some ways 

we have come full circle.  The advent of molecular biologic techniques have led us to a better 

understanding of tumor behavior and the more recent progress in high throughput expression 

profiling studies have furthered our understanding of the alterations that tumors have on a 

nucleic acid level.  The results of these studies can be furthered triaged into the most relevant 

biomarkers by validating the most promising biomarkers on separate validation sets with 

different methods.  Ideally, they should ultimately be tested on patient samples in well-designed 

prospective clinical trials to prove or disprove their clinical utility. 
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FIGURE LEGENDS 

Figure 1. Schematic of AQUA on a TMA spot 

A fluorescent labeled anti-cytokeratin (CK) antibody functions as an epithelial tag and 

distinguishes tumor cells from stromal elements.  The assumption is that these are tumor cells not 

benign because TMA spots are preselected for tumor rich areas.  DAPI is used as a nuclear tag.  

Using an automated subtraction algorithm (RESA), out-of-focus information is subtracted to 

produce the non-nuclear (cytokeratin stain) and nuclear (DAPI) compartments.  The CK image is 

converted into a binary tumor mask.  Each pixel in the tumor mask is defined as either nuclear or 

non-nuclear (i.e. membrane/cytoplasmic) to define the respective sub-cellular compartments. 

Target is visualized ustilizing a Cy5 labeled secondary antibody.  The target image also 

undergoes RESA and the intensity is quantified (total signal intensity / area of the compartment). 

A constructed image of the target localization shows that the target is predominantly red 

(membrane/cytoplasm) rather than blue (nuclear).
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Table 1. In situ quantitative methods 

Method Description Advantages Disadvantages 

ISH Use of labeled 

complimentary DNA or 

RNA strand to localize 

a specific DNA or RNA 

sequence of interest in 

tissue 

Can help identify and 

determine structure 

of chromosomes, 

chromosomal 

integrity, localize 

and count amplified 

genes and mRNA 

transcripts 

No information on protein 

levels, unclear sensitivity 

IHC – Manual Use of labeled 

antibodies to localize 

specific proteins of 

interest in tissue using 

chromagen based 

detection and bright 

field microscopy 

Readily feasible for 

most clinical 

diagnostics labs 

Limited to nominal (or 

semi-quantitative) scoring, 

influential to bias, small 

differences in intensity 

difficult to detect by 

human eye, antigen 

retrieval generally 

required, antibody 

specificity needs to be 

validated 

IHC – 

Chromagen-

based 

automation 

Same as IHC-manual 

except automated 

measurement of protein 

based on intensity of 

staining 

Continuous scoring Limited to user-defined 

compartments, limited 

ability to multiplex several 

markers, lower dynamic 

range compared with 

fluorescence, antigen 

retrieval generally 

required, antibody 

specificity needs to be 

validated 

IHC – 

Fluorescence-

based 

automation 

Use of labeled 

antibodies to localize 

specific proteins of 

interest in tissue, and 

automated measurement 

of protein based on 

emittance of fluorescent 

signal of target 

Continuous scoring, 

ability to multiplex 

several markers 

Autofluorescence, fewer 

validated studies, currently 

limited to research labs 

with limited commercial 

availability, antigen 

retrieval generally 

required, antibody 

specificity needs to be 

validated 
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Table 2. Sources of tissue for biomarker studies 

Source Description Advantages Disadvantages 

Frozen Tissue sources fixed 

by acetone or OCT, 

then frozen by dry ice 

or flash frozen in 

liquid nitrogen 

Higher sensitivity 

for ISH, more native 

structures due to 

less fixation of 

tissue that causes 

cross-linking 

More difficult TMA 

construction – need to 

maintain temperature, 

morphology diminished 

FFPE Formalin-fixed 

paraffin-embedded 

tissue 

Better morphology, 

works well with 

IHC and ISH 

Must apply antigen 

retrieval, slow fixation 

time may cause 

changes of certain 

protein biomarkers and 

RNA levels 

Whole Tissue Section Section of tissue block 

removed and 

transferred onto slide 

for analysis 

Standard diagnostics 

pathology 

technique, larger 

area than TMA for 

more variable and 

heterogeneous 

marker analysis 

Can analyze only 

limited numbers of 

tissue sections at a 

time, little immediate 

normalization between 

tissue sections 

TMA Cores of multiple 

tissue blocks fixed in 

grids, then sectioned 

and fixed onto slide for 

analysis 

Analysis of 

hundreds of samples 

simultaneously, 

ability to do large-

scale analysis on 

biomarker, better 

standardization, 

amplification of 

tissue resources 

Heterogeneity issues, 

not yet broadly 

available, not directly 

applicable to clinical 

diagnostic purposes 
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Table 3. Available automated analysis systems 

System 

(Manufacturer) 

Description Commercially 

Available 

BLISS with 

TMAscore 

(Bacus 

Laboratories, 

Inc.) 

Chromagen-based system, digital image acquisition of 

sections and TMAs, image analysis and quantitation using 

an intensity based algorithms 

Yes 

ACIS (Clarient) Chromagen-based system, digital image acquisition, image 

analysis and quantitation using an intensity based 

algorithms (validated measurements of Her2/neu in breast 

cancer) 

Yes 

Pathiam Ruo 

(BioImagene) 

Chromagen-based system, digital image acquisition, image 

analysis and quantitation, IHC algorithms for common 

biomarkers, morphological and intensity based algorithms, 

measures lengths and regions of interest 

Yes 

ScanScope 

(Aperio 

Technologies) 

Chromagen-based system, digital image acquisition and 

quantitation of percent-positive cells, quantification of area 

and intensity of stain, compartmentalization algorithms 

Yes 

VIAS (Ventana 

Medical Systems, 

Inc.) 

Chromagen-based system, real-time image capture and 

quantitation of percent-positive cells, marker intensity, size 

and shape 

Yes 

CMYK color 

model (Ontario 

Cancer Institute) 

Chromagen-based system, digital image acquisition, image 

analysis and quantitation using an intensity based 

algorithms with yellow channel  

No 

iVision and 

GenMx Vision 

(Biogene 

Chromagen- and Fluorescence-based system, digital image 

acquisition and quantitation of percent-positive cells, 

quantification of area and intensity of stain, 

compartmentalization algorithms 

Yes 

iColor and iCys 

Imaging 

Cytometer 

(CompuCyte) 

Chromagen- and Fluorescent-based system, digital image 

acquisition, quantitation of marker intensity, co-localization 

to molecular-defined compartments, morphological imaging  

Yes 

Ariol SL-50 

(Applied Imaging 

Corp.) 

Chromagen- and Fluorescent-based system, digital image 

acquisition, quantification using intensity of stain and 

fluorescence in IHC and FISH, co-localization to 

compartments, multiple chromagenic channels, 

morphometric analysis 

Yes 

AQUA (HistoRx, 

Inc.) 

Fluorescence-based system, utilizes a image grabber system 

to automate area of tissue section or spot location of TMA 

to image, determination of molecular-defined 

compartments, co-localization of target to compartments, 

ability of multiple targets 

Yes 
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Quantitative analysis of estrogen receptor heterogeneity
in breast cancer
Gina G Chung1, Maciej P Zerkowski2, Sriparna Ghosh1, Robert L Camp3 and David L Rimm3

Immunohistochemical analyses (IHC) of biomarkers are extensively used for tumor characterization and as prognostic and
predictive measures. The current standard of single slide analysis assumes that one 5 mM section is representative of the
entire tumor. We used our automated image analysis technology (AQUA) using a modified IHC technique with fluor-
ophores to compare estrogen receptor (ER) expression in multiple blocks/slides from cases of primary breast cancer with
the objective of quantifying tumor heterogeneity within sections and between blocks. To normalize our ER scores and
allow slide-to-slide comparisons, 0.6 mm histospots of representative breast cancer cases with known ER scores were
assembled into a ‘gold standard array’ (GSA) and placed adjacently to each whole section. Overall, there was excellent
correlation between AQUA scores and the pathologist’s scores and reproducibility of GSA scores (mean linear regression
R value 0.8903). Twenty-nine slides from 11 surgical cases were then analyzed totaling over 2000 AQUA images. Using
standard binary assignments of AQUA (410) and pathologist’s (410%) scores as being positive, there was fair con-
cordancy between AQUA and pathologist scores (73%) and between slides from different blocks from the same cases
(75%). However using continuous AQUA scores, agreement between AQUA and pathologist was far lower and between
slides from different blocks from the same cases only 19%. Within individual slides there was also significant hetero-
geneity in a scattered pattern, most notably for slides with the highest AQUA scores. In sum, using a quantitative measure
of ER expression, significant block-to-block heterogeneity was found in 81% of cases. These results most likely reflect both
laboratory-based variability due to lack of standardization of immunohistochemistry and true biological heterogeneity. It
is also likely to be dependent on the biomarker analyzed and suggests further studies should be carried out to determine
how these findings may affect clinical decision-making processes.
Laboratory Investigation advance online publication, 5 March 2007; doi:10.1038/labinvest.3700543

KEYWORDS: breast cancer; estrogen receptor; tumor heterogeneity; automated analysis; quantitative analysis

It has long been recognized that breast cancer exhibits widely
disparate clinical behavior that cannot be solely attributable
to stage. Recent expression profiling studies have corrobo-
rated this finding by identifying biologically distinct groups
of tumors spanning traditional classification schemas such as
stage and tumor size.1 Within an individual tumor, biologi-
cally relevant heterogeneity may also exist in part, owing to
variations in the tumor microenvironment, cell cycle varia-
tions, and stem cell subpopulations.

Immunohistochemical (IHC) evaluation of biomarkers in
tissue has evolved to become a commonly used diagnostic
tool for the pathologist, predominantly because of its ease
and ability to retain morphologic information. In addition,
tissue microarrays (TMA) have become a popular tool for the
rapid and efficient detection of clinicopathologic associations

in large numbers of samples.2,3 Major criticisms of TMAs
relate to tumor heterogeneity and whether small TMA cores
are representative of the whole section. On a broader scale,
these criticisms are limited because they are based on the
assumption that whole sections accurately reflect the entire
tumor. For example, tissue is typically sampled at the rate of
one section per cm3 of tumor. Although the volume of each
TMA spot represents only about 0.0002% (0.6� 0.6 mm2

diameter and 5mm thick) of this tumor, the standard tissue
section would represent only 0.05% (1� 1 cm dimension and
5 mm thick) of this tumor.

Estrogen receptor (ER) is an important regulator of both
physiologic and pathologic mammary growth and differ-
entiation.4,5 Although its expression has been associated with
well differentiated, lower grade tumors, most studies have
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shown that it also retains independent prognostic informa-
tion.6 More importantly, ER expression is the most reliable
predictor of response to endocrine therapies in breast can-
cer.7 Current standard of care for determining ER status of a
given clinical sample is IHC on a whole section with manual
readouts. Although individual tumors typically have rela-
tively homogenous ER expression, staining heterogeneity has
been observed in some tumors.8

We have developed an algorithm for quantitatively de-
termining in situ protein expression called automated image
analysis technology (AQUA).9 AQUA is a hybrid of standard
IHC and flow cytometry in that it requires antigen retrieval
on fixed tissue, application of primary and secondary anti-
bodies, and use of multiplexed fluorescent detection to
produce an objective, numeric score. This technology reduces
the bias of subjective assessment and allows quantification of
protein expression using molecular colocalization techniques.
Unlike either technology however, the resultant score is di-
rectly proportional to the concentration of the target protein
within a user-defined compartment.10 This methodology has
been validated with a variety of biomarkers in many different
cancers.11–13 Thus, we used AQUA to collect continuous ER
scores from multiple images/fields of standard whole-tissue
sections from multiple blocks of the same surgical cases with
the objective of quantifying tumor heterogeneity.

MATERIALS AND METHODS
Case Selection
Eleven cases of primary invasive ductal adenocarcinomas of
the breast from 1999 to 2000 were retrieved from the Yale
University Pathology archives. Specifically, cases were selected
that spanned a broad range of ER expression as determined
by the pathologist at routine signout (eg 0–100%), that had
abundance of tumor present in the blocks, and that had
multiple blocks available from the same surgical case. Areas
of invasive tumor were identified by a pathologist and circled
on the whole section, giving careful attention to avoid areas
with admixed in situ and/or benign tissue. Overall, there were
29 slides from 11 cases (either one, two, or three blocks from
the same case and one section studied per each block). This
study was approved by the Yale University Human In-
vestigations Committee.

Gold Standard Array/Control Array
In order to normalize our ER scores and allow slide-to-slide
comparisons, a ‘gold standard array’ (GSA) of exemplary,
representative breast cancer cases with known ER scores was
constructed. Six cases of breast cancer from 2002 were se-
lected from the archives of the Yale University Department of
Pathology. These cases also had abundant invasive cancer in
the blocks and had a relatively homogenous appearance to
the tumor. The signout pathologist’s ER scores were 0, 20, 50,
70, 80, and 100% and the pathologists in this study felt
these were classic or exemplary examples of these scores.
Representative areas of invasive tumor were identified by

a pathologist and 0.6 mm diameter cores were placed into a
recipient block using a precision arraying instrument (Bee-
cher Instruments, Silver Spring, MD, USA). First, a master/
triplicate GSA was assembled by taking three consecutive cuts
(5 mm) of the GSA recipient block and affixing to an adhesive
slide using a UV crosslinkable tape transfer system. Then, one
5 mm cut of the GSA was affixed onto slides adjacent to each
whole section from the 29 slides described above to be
stained and analyzed concurrently.

Immunohistochemistry
Staining slides for AQUA has been previously described.9

Briefly, slides were deparaffinized in xylene, rinsed in ethanol,
and rehydrated. Antigen retrieval was performed by pressure
cooking for 15 min in 6.5 mM sodium citrate buffer. En-
dogenous peroxidase was quenched by immersing the array
in a 2.5% methanol/hydrogen peroxide buffer for 30 min.
Nonspecific background staining was further minimized by
preincubating the array with 0.3% bovine serum albumin in
0.1 M Tris-buffered saline (pH 8.0) for 1 h. Primary anti-
bodies used were pancytokeratin and ER, clone 1D5 (DAKO,
Carpinteria, CA, USA). This primary antibody cocktail was
incubated overnight at 41C in a humidity chamber. Goat
anti-mouse antibody conjugated to a horseradish peroxidase-
decorated dextran polymer backbone (Envision; DAKO
Corp.) was used as a secondary reagent to detect the bound
primary target (ER) and Cy5-tyramide was used to visualize
the amplified signal. Cy-5 (red) was used because its emission
peak is well outside the green-orange spectrum of tissue
autofluorescence. The cytokeratin was visualized with a Cy3-
conjugated secondary antibody and the array was then
counterstained with 40,6-diamidino-2-phenylindole (DAPI)
to define the nuclear compartment.

Image Collection and AQUA Analysis
Image acquisition and automated analysis have also been
described extensively in previous work.9 For the whole sec-
tion analysis, images for the GSA and whole sections on each
slide were captured separately. Images are automatically ac-
quired with a high-resolution monochromatic camera using
filter cubes specific to the emission/excitation spectra of
DAPI, Cy5, and Cy3. Then, using this stack of uncompressed
images, the AQUA software then allows one to distinguish
between areas of tumor and stromal elements using the cy-
tokeratin stain, resulting in a unique binary cytokeratin tu-
mor mask for each spot. Furthermore, the cytokeratin and
DAPI stains are used to assign each pixel under the tumor
mask into non-overlapping membrane/cytoplasmic and nu-
clear locales. AQUA scores for ER are then calculated that
correspond to the average signal intensity divided by com-
partment area. Although non-nuclear ER expression may be
biologically relevant, as standard ER analysis relies on nuclear
expression, we chose to quantitate ER signal in the nuclear
compartment, that is, AQUA ER score within the DAPI-de-
fined nuclear compartment. The AQUA score is thus pro-
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portional to the average protein concentration in the nucleus
across all of the cells within the keratin staining mask. This
information can then be exported in a format suitable for
analysis by standard statistical software packages.

For the whole sections, using a � 20 objective, a series of
image ‘fields’ were captured within the circled invasive tumor
to ultimately cover the vast majority of tissue of interest.
Depending on the size of the tumor, 33–147 fields were
captured per section and a total of 2043 fields were analyzed.
Postimage capture, images were reviewed, particularly near
the edges, to ensure that only fields within circled area of
invasive tumor were included for analysis.

RESULTS
Analysis of GSA and Normalization
Three consecutive 5 mm cuts of the GSA were placed on the
same slide, stained with cytokeratin, ER, and DAPI and
analyzed with AQUA. Figure 1a shows the mean of the
master/triplicate AQUA scores compared with the patholo-
gist’s ER scores. Overall, there was an excellent correlation
between the mean AQUA scores and the pathologist scores.
However, because the AQUA scores represent ER con-
centration, and whereas the pathologist scores represent
simply the percent nuclei positive without regard to signal
intensity or concentration, the relationship is not strictly
linear.

Next, log AQUA scores of the GSA histospots on each
whole-section slide was compared with the mean log scores
on the master/triplicate GSA. Of note, identical staining
conditions were used for all slides, including antibody con-
centrations, incubation times, etc. Figure 1b shows a re-
presentative case with linear regression R¼ 0.8119. For all 29
slides, linear regression R values ranged between 0.7750 and
0.9853, mean 0.8903. These graphs were used to normalize
the individual raw AQUA scores from each field on the whole
sections.

Inter-Slide Comparisons
Figure 2 shows slide-to-slide comparisons matched against
the signout pathologist’s score. Interslide differences appear
to be minimized with the lowest scores. In our experience,

AQUA ER scores greater than ten are typically considered
positive associated with high pathologic scores and with
better prognosis in TMA studies.14 Similarly, a pathologist’s
score of greater than 10% is traditionally considered positive.
Using these a priori divisions to create binary values for
AQUA and the pathologist’s scores, the concordancy between
AQUA and pathologist is reasonably good at 73% (k
score¼ 0.526). Furthermore, the three discordant cases (F, G,
and J) all show individual fields above the threshold for
positive cases. If these field were selected (instead of the
average) the concordance would be 100%. Table 1 shows
normalized, mean AQUA scores for the different blocks.
Again, using the binary values for AQUA ER scores, the
concordancy between different blocks from the same case is
75% (24 out of a total of 32 block-to-block comparisons
concordant). Of the comparisons that were considered dis-
cordant, the absolute differences were small (eg Case J/Block
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Table 1 Slide-to-slide ER heterogeneity

Case Block Pathologist (%) Mean AQUAa Standard error P value; Block comparisons P value; ANOVA

A 1 0 3.667 0.074 0.2446; 1 vs 2 0.1995

2 3.461 0.152

B 1 10 3.332 0.072 o0.0001; 1 vs 2 o0.0001

2 2.911 0.039 o0.0001; 2 vs 3

3 2.51 0.048 o0.0001; 1 vs 3

C 1 20 51.803 1.105 o0.0001; 1 vs 2 o0.0001

2 25.884 0.976 o0.0001; 1 vs 3

3 21.433 0.733 o0.0001; 1 vs 4

4 40.12 1.444 0.0077; 2 vs 3

o0.0001; 2 vs 4

o0.0001; 3 vs 4

D 1 20 100 2.55 o0.0001; 1 vs 2 o0.0001

2 40.978 3.71

G 1 80 6.356 0.228 o0.0001; 1 vs 2b o0.0001

2 10.063 0.289 0.0018; 1 vs 3

3 5.527 0.138 o0.0001; 1 vs 4

4 8.105 0.225 o0.0001; 1 vs 5

5 4.979 0.167 o0.0001; 2 vs 3b

o0.0001; 2 vs 4b

o0.0001; 2 vs 5b

o0.0001; 3 vs 4

0.1023; 3 vs 5

o0.0001; 4 vs 5

H 1 90 63.836 3.31 o0.0001; 1 vs 3 o0.0001

2 57.639 1.935 0.0811; 1 vs 2

3 45.614 2.466 0.0007; 2 vs 3

I 1 95 20.845 1.027 0.2047; 1 vs 2 0.2047

2 18.306 1.756

J 1 100 10.151 1.162 0.0042; 1 vs 2b 0.0253

2 7.035 0.366 0.0117; 1 vs 3b

3 6.93 0.285 0.69; 1 vs 4

4 10.614 0.797 0.9348; 2 vs 3

0.0025; 2 vs 4b

0.0067; 3 vs 4

K 1 100 36.778 2.056 o0.0001; 1 vs 2 o0.0001

2 69.955 4.36

a
Normalized score to tissue controls and to maximum score (case D1).

b
Discordant block to block comparisons with AQUA binary values.
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1 vs Case J/Block 2 had AQUA scores of 10.151 and 7.035,
respectively) (Table 1).

Most notable, however, are the discordancies between the
pathologist and AQUA for cases F, G, J, and to a lesser degree
case I (Figure 2 and Table 1). We attempted to retrieve the
original ER slides assessed by the signout pathologist for
these cases, but owing to the age of the research cases, we
were only able to locate case I. Our review of this slide
showed that the tumor appeared to be diffusely but weakly
stained in a fairly nonspecific pattern (Figure 3a). There were
however scattered areas of strong nuclear staining in adjacent
benign components (Figure 3b). Because AQUA gives the
average signal intensity in all pixels in a molecularly defined
compartment (ie nucleus), it is possible that this may have
accounted for the discordancy in this particular case. This
case highlights the advantages of quantitative analysis when
coupled to molecular compartment colocalization.

Because AQUA gives us continuous scores, we then per-
formed unpaired t-tests and ANOVA analysis between the
normalized, mean AQUA scores from different slides within
individual cases (Table 1). Contrary to our results using
binary divisions, this showed that only 6 of 32 (19%) slide-
to-slide comparisons were concordant (t-test comparison
P-value 40.05). Only cases A and I, 2 of 9 (22%), were
concordant (ANOVA P-value 40.05). Case B was discordant
with all three slide-to-slide comparisons significantly differ-
ent. However, the AQUA scores were all extremely low (o5)
making these cases likely ‘ER negative,’ and the significance of
this discordancy unclear. In addition, this decreased our
concordancy with the pathologist’s score. At first, this seems
contrary to our findings on our master/triplicate GSA in

which we saw good correlation between AQUA scores and
pathologist’s scores (Figure 1). However, the 0.6 mm dia-
meter histospots on the GSA were carefully chosen as the
most homogeneous appearing areas of the tumor with likely
more homogeneous ER expression, and multiple blocks from
these cases were not evaluated. For the 29 whole sections,
many fields from each section and multiple blocks from each
case were analyzed, thus maximizing apparent tumor het-
erogeneity. These data confirm the fact that field selection for
scoring can dramatically change outcome.

2-D Spatial Heterogeneity
To further characterize heterogeneity within individual slides,
we looked at the pattern of ER expression on each slide. Our
normalized AQUA ER scores ranged from 2.959 to 174.672.
Most of the slides with low AQUA scores (r10) were rela-
tively tightly clustered with minimal variance (Figure 4a).
However, as the scores on a given slide increased, the variance
generally increased (Figure 4a). This finding did not seem to
be strictly related to the number of fields analyzed per slide as
high variance was seen with high number of fields (Figure 4a,
Case C) as well as with low number of fields (Figure 4a, Case
K). Corresponding 2-D ‘heat maps’ were also generated based
on the normalized AQUA scores (Figure 4b). The heat maps
show the relative score of each field with respect to all of the
other fields on the same slide. As is traditionally done for
array illustration, increasing red intensity correlates with
concentrations of ER above the mean and increasing green
intensity correlates with degree below the mean. Although for
most slides, high and low scores on a given section appeared
to be randomly scattered and with a normal distribution

Figure 3 Case I used by the pathologist to generate the clinical ER score. (a) low-power image of the ER staining in the invasive tumor is shown. (b) One of

several areas on the slide showing strong nuclear staining in an adjacent benign lesion is shown.
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Figure 4 Scatter plots and 2-D representations of whole sections. (a–c) Representative data from five matched whole sections. (a) scatter plots of

normalized AQUA scores of estrogen receptor are shown. Each image obtained on the section is assigned a field number starting in the upper left corner of

the slide, across the row and down to the next row in a serpentine pattern. (b) heat maps showing AQUA ER scores assembled into a ‘virtual slide’ are

shown. The most intense red are the highest ER scores and the most intense green are the lowest ER scores. (c) Corresponding H&E-stained whole sections

used to identify areas of invasive cancers.
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throughout the tumor, several slides showed a clustered
pattern (Figure 4b, Cases J and 4b, and C). Interestingly, this
clustering was seen in low scoring ‘ER negative’ cases as well
as in higher scoring ‘ER positive’ cases. Indeed, scattered as
well as clustered patterns were seen even on different blocks
from the same case (Figure 4b, Case C). Corresponding
whole sections stained with hematoxylin and eosin are also
shown (Figure 4c) to demonstrate the areas of invasive
cancers analyzed and the non-evaluable areas (shown as
white squares in Figure 4b), which in general were areas
without any tissue, minimum ‘maskable’ tumor, and areas
having predominantly stroma or necrosis.

DISCUSSION
In this report, we have used a quantitative measure of ER
expression, AQUA, to demonstrate significant block-to-block
heterogeneity of IHC reaction. Our results most likely reflect
both laboratory-based variability owing to lack of standar-
dization of immunohistochemistry and true biological het-
erogeneity. These results raise several questions. Whereas the
AQUA algorithm allows separation of epithelial cells from
stroma with the keratin mask, contamination of the analysis
with benign and/or in situ epithelial cells remain a possibility.
These confounding factors were minimized because, as de-
scribed above, analysis was limited as much as possible to
previously identified areas of invasive cancer, and because
adjacent in situ tumors typically show similar ER expression
compared with the invasive component.15 In addition, a
number of investigators have described more intense staining
in the periphery of tumors compared with the center.16 This
can be attributed in part to increased necrosis in the center
(these areas are eliminated from AQUA analysis with a crop
function) and fixation artifact. Some have reported this
pattern more in surgical specimens than in matched core
biopsies, suggesting that improper fixation of the central
tumor in large specimens may play a role.16 Several of our
slides such as in (Figure 4b), Cases A and J also suggest more
intense staining in the periphery. Alternatively, many in-
vestigators have described a phenomenon in which tumor at
the invasive front shows different morphologies and pre-
ferentially expresses certain proteins vs tumor at the trailing
edge/center.17 Although this has been most extensively de-
scribed for colorectal cancers, this has also been described in
breast cancer in the so-called prairie fire pattern.18 Irrespec-
tive of the reasons for the heterogenous pattern of ER ex-
pression within individual slides when using quantitative
assessments, it is not surprising that there is a significant
block-to-block heterogeneity within cases when using similar
quantitative measurements.

At first, our concordancy rate appears lower than previous
studies looking at different assays for ER in the same tumor,
ER assessments in matched core biopsies and surgical re-
sections, and comparative ER levels in matched primary
tumors and their metastases.16,19–21 However, earlier studies
that used biochemical assays such as the dextran-coated

charcoal method showed remarkably similar levels of ER
discordancy within tumors ranging from 17 to 40% when
using a binary cutpoint for ER positivity (eg Z10 fmol/
mg).22–24 When the differences in the mean content were
compared within tumors however, the discordancy rate was
significantly higher. Our results with AQUA using binary
divisions and then continuous measurements mimic closely
the results seen in these prior studies. This suggests that our
methodology may have the capacity to combine the practi-
cality, morphologic information achievable with an in situ
assay, and arguably superior predictive capacity of IHC as-
sessment of ER measurements with the continuous readouts
of ER levels analogous to a biochemical assay. This may also
be important because higher levels of ER expression both by
biochemical methods and by semiquantitative IHC readings
(eg Allred score) have been associated with a greater like-
lihood of endocrine therapy response.7,25 Ultimately, the
value of an exact ER score may be seen in the context of
other exact scores like PR) in distinguishing among various
hormonal therapy options.

In the future, it is conceivable that other potential prog-
nostic and predictive biomarkers may also rely more heavily
on continuous readouts and more accurate assessments of
total tumor heterogeneity. For example, if the division for
optimally choosing patients for a given biologic therapy is
between the highest expressers vs the high expressers (eg
AQUA o150 vs 4150), simply looking for evidence of
minimal staining (none vs any) before choosing to give
treatment (as is often done for ER and tamoxifen treatment)
and more cautious assessment of tumor heterogeneity for
that particular biomarker will be necessary.

In summary, using AQUA to quantify in situ ER expression
on multiple blocks from different primary breast cancers, we
demonstrate reasonable correlation using traditional binary
divisions, although significant slide-to-slide tumor hetero-
geneity was seen in the majority of cases when continuous
scores were analyzed. Heterogeneity was greatest for those
with higher levels of expression. It is likely that tumor het-
erogeneity is highly dependent on biomarker analyzed and
caution should be used when making IHC determinants of
biomarker expression in a tumor with single slide assess-
ments.
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